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We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecu-

lar interaction. The resulting model is found to be consistent with the model previously derived from a
lattice-gas cellular automaton [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)] but applies in a much
broader domain. A number of important insights are gained from the kinetic theory perspective. First, it is
shown that even in the isothermal case, the energy equipartition principle dictates the form of the equilibrium

distribution function. Second, thermal diffusion is shown to exist and the corresponding diffusivities are given
in terms of macroscopic parameters. Third, the ordinary diffusion is shown to satisfy the Maxwell-Stefan

equation at the ideal-gas limit.
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Mass transport in a multicomponent fluid system is im-
portant in a wide range of practical applications. The classic
hydrodynamic treatment of this problem is through Fick’s
equation or the Maxwell-Stefan equation coupled with the
hydrodynamic equations [1]. When the number of compo-
nents is nontrivial and none of the components can be as-
sumed to be dilute, the solution of the hydrodynamic equa-
tions becomes challenging. More importantly, due to the
recent rapid growth of microscale and nanoscale applica-
tions, understanding the mass transport at length scales com-
parable to the molecular mean free path becomes critical. In
this flow regime, the continuum assumption breaks down and
some kinetic descriptions have to be adopted.

After the intense development in the past two decades, the
lattice Boltzmann (LB) method [2,3] has been established as
a promising alternative for computational fluid dynamics.
Various LB models for multiple components have been sug-
gested since the early days [4,5]. In particular, a multicom-
ponent model which incorporates intermolecular interactions
was previously suggested [6] for modeling mixtures of arbi-
trary number of components. The central idea is that the
distribution function of each component relaxes to a Max-
wellian centered at a common velocity so chosen that, in the
absence of long-range interactions, the total momentum of
all components is conserved at each collision. This model
satisfies the indistinguishable principle and the interaction
model is Galilean invariant [7]. In addition, through the
Chapman-Enskog analysis [8,9], it was shown that this
model exhibits the diffusional behaviors such as the ordinary,
the pressure, and the forced diffusions. Various diffusivities
were also calculated according to Fick’s model. However,
due to its athermal lattice-gas origin, thermal diffusion can-
not be considered, nor can any thermodynamic arguments.

When modeling mixtures of gases with different molecu-
lar weights, arguably the most important piece of physics
underlying many interesting diffusional behaviors is the en-
ergy equipartition principle which implies in the present con-
text that the averaged kinetic energy should be the same for
particles of all components. As this principle is of a thermo-
dynamic nature, it has not been explicitly implemented in
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any of the existing multicomponent LB models which, as far
as we are aware of, are all athermal. Nevertheless, out of the
requirement that the equation of state (EoS) should be that of
an ideal-gas mixture, it was suggested [9] that the equilib-
rium distribution function be so chosen to effectively make
the averaged energy a constant for all components. The lack
of a convincing justification for the equilibrium distribution
function has led to the adoption of purely numerical and
computationally more expensive approaches, such as the use
of multiple lattices [10,11] and the introduction of additional
tunable parameters [12]. It is also our suspicion that the ab-
sence of the energy equipartition has led to the reported de-
viation from Graham’s law in the simulation of near-wall
diffusion [13].

Inspired by the grad 13-moment theory [14], the LB
method was reformulated as a special velocity-space discreti-
zation of the continuum Bhatnagar-Gross-Krook (BGK)
equation by projecting it into a subspace of the velocity
space spanned by the leading Hermite polynomials [15-18].
Taking advantage of the one-to-one mapping between the
leading moments and the discrete distribution function val-
ues as established by the Gauss-Hermite quadrature, one can
effectively solve for the leading moments from a discrete-
velocity kinetic equation. Besides giving an alternative inter-
pretation of the LB method, the formulation has recently led
to both satisfactory clarifications of some long-standing is-
sues and applications in flow regimes thought to be impos-
sible for the LB method [19-22].

In this Rapid Communication, we derive the multicompo-
nent LB model from the continuum kinetic theory with the
assumption that the equilibrium distribution function of each
component is a local Maxwellian with common velocity and
temperature. The model obtained is not restricted to a par-
ticular lattice, contains no arbitrary constants, and naturally
satisfies the principles of indifferentiability and energy equi-
partition. The mass transport is then analyzed and shown to
recover the correct macroscopic behaviors. Finally, a number
of concerns [23,24] about the validity of the mixing model
are addressed in light of the insight gained in the present
analysis. We would like to point out that, despite its long
history in the classic kinetic theory, the development of mul-
ticomponent BGK models is still far from being satisfactory
[25]. The model and analysis developed in the present work
could also be applied in areas outside the LB method.
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Consider a mixture of § components of monatomic gases.
The molecular weight of the oth component is denoted by
m,. Let x and & be the position and velocity vectors, respec-
tively, and ¢ be the time. The single-particle distribution
function of the oth component, f (x,&,1), is defined such
that f,(x, &, t)dxd§ is the probability of finding a particle of
the oth component in the element dxd§ of the phase space at
time ¢. By definition, the number (mole) densities n,(x,7),
mass densities p,=m,n,, fluid velocity u(x,7), and internal
energy density per unit mass, e(x,?), are velocity moments of
the distribution function,

%:nngfgdg, o=1,....5, (1a)
N
pu=2m,| f.EdE, (1b)
o=1
1 S
pe:EEma fa’|§_u|2d§’ (10)
o=1

where p= Ei:l p. 1s the total mass density of the mixture and
the barycentric flow velocity of the mixture, u, is the mea-
sure of the mean momentum transfer.

It is convenient to consider higher velocity moments in a
reference frame moving with velocity # and introduce the
intrinsic velocity c=&—u. Of the most significance are the
second moment P and the contracted third moment Q,

S

Pl/ = 21 me fU-Cidec, (23)
S

Q;= 2 my | focic’de, (2b)
o=1

which are identified, respectively, with the stress tensor and
the head flux due to molecular motion. The infernal kinetic
energy is the trace of the second moment,

N
1 1
p€=_2 me fUCzdc=_Pii' (3)
24 2

The per-component velocity u, and the internal energy den-
sity €, of the ath component are defined as

v = [ 18 ne=5 | roe @

For a mixture of ideal gases in D dimensions, the static
pressure p can be taken as the averaged normal pressure,

pzpii/Dzsz/D, (5)

where the Einstein summation convention is used. In a mix-
ture of monatomic gases, € is related to the temperature 7 by
the energy equipartition principle. Defining the total number
density n=35_ n,, we have
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pe=(D/2)nkgT, (6)

where kp is the Boltzmann constant. We therefore have the
ideal-gas EoS,

p =nkgT. (7)

The evolution of the single-particle distribution functions
is governed by the Boltzmann equations. Let g, be the ac-
celeration of the body force exerted on the particles of the
oth component. We have

ar

= =1,....8, (8
P o (®)

+§' Vf(r+go" ng(rzﬂm
where (), on the right-hand side is the collision term repre-
senting the change in the distribution due to particle colli-
sions. The collision term must conserve mass for each of the
components, the total momentum, and the total kinetic en-

crgy,

fﬂgd§=0, o=1,...,S, (9a)
S
> m,| Qédé=0, (9b)
o=1
S
> my | QEdE=0. (9¢)
o=1

The single-relaxation-time approximation [26] introduced
by Bhatnagar et al. can also be extended to the multicompo-
nent mixtures [27]. Here, we propose a simple relaxation
model as

Q,=- (Ut )f,-f7], o=1,....8, (10)

where 7, is the collision time of the oth component and f7(¢9)
is a local Maxwellian corresponding to the density n,, a
common Velocity u', and a common temperature T,

D/2 12
m myl&E—u
g - ) exp| — |§—,| . (1 1)
2k T 2kgT

jv(eq) - n,,(

In the dimensionless units introduced in Ref. [18], all veloci-
ties are scaled by the velocity co=kzTo/m,, where T, and
my are, respectively, the reference temperature and the unit
of molecular mass. If we define the dimensionless Maxwell-
Boltzmann distribution as

n [
Y (n,u, 6,8) = W‘“p{‘ } (12)
the dimensionless f7? can be written as

£ = f(MB w0, ), (13)

where 6'=T'/T,, and all quantities are hereinafter to be un-
derstood as dimensionless.

Obviously the collision term given by Egs. (10) and (13)
satisfies Eq. (9a). To satisfy the rest of Egs. (9), we substitute
Egs. (10) and (13) into Egs. (9b) and (9c¢) to have
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s
> Po u,—u')=0, (14a)
o=1 To

S !

p 12
E—<260+u(,———u ): , (14b)
o=1 To o

from which ' and @’ can be solved as
S s

MELY (15a)

o=1 To o=1 To

S S

T , Ny
o=>"20e +i2-u? / DI (15b)
o=1 To o=1 To

As far as we know, Eq. (15a) was first suggested in Ref.
[8] and Eq. (15b) was a natural extension. As pointed out by
an anonymous referee, the same expressions can also be ob-
tained as a special case from a more general BGK model
[25], and the discussions therein on the H theorem and hy-
drodynamics apply here as well.

Equations (8), (10), (12), (13), and (15) define our BGK
model for multiple components. A few important observa-
tions can be made immediately. First, when all components
are identical, i.e., 7,=7 and m =m, the system reduces to the
single-component BGK equation and satisfies the indifferen-
tiability principle. Second, u#’ and €' generally do not equal
u and 6 unless either the velocities or temperatures of all
components are the same, or all the relaxation times are the
same. As the mixture approaches equilibrium, all #, and 6,
relax to u’ and @', which ensures that #’ and ' eventually
approach u and 6. Third, the m, factor in Eq. (13) is the
direct consequence of the energy equipartition principle. It
dictates that heavier particles have smaller averaged thermal
speed, so that the averaged kinetic energy, and thus the tem-
perature, is the same for particles of all components.

The multicomponent lattice BGK (LBGK) model on a
discretized space-time can now be derived following the
same derivation for single-component [18]. The continuum
model is first discretized in velocity space by projecting Eq.
(8) into the Hilbert space spanned by the leading Hermite
polynomial. Choosing the set of discrete velocities {£,:a
=1,...,d}, and the corresponding weights {w,:a=1,...,d},
so that together they form a Gauss-Hermite quadrature which
ensures that relevant moments can be exactly evaluated us-
ing f7, the dynamics of the leading moments can then be
recovered from that of the discrete distribution function ob-
tained by evaluating Eq. (8). After defining f,=w.f,(&,)/
w(&,) and approximating the left-hand side of Eq. (8) by a
finite-difference operator, the multicomponent LBGK equa-
tions are

SO+ £t +1) = f20e,0) == (17 )[fT - f7D] + FO,

o=1,....,S, a=1,....d, (16)

where F; are the body-force contribution [18] written here as
a part of the collision term, and f_ (eq) :f(n(,,u’ 0 /m,),

where f is a finite-order truncated Hermite expansion of the
Maxwellian, given originally as Egs. (18) and (19) in Ref.
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[17], and later in more elaborated forms as Eq. (3.23) in Ref.
[18] and Eq. (14) in Ref. [20]. Note that in contrast with the
conventional Taylor expansion in small velocity, the tem-
perature appears as a dynamic variable on par with the ve-
locity, allowing thermal effects to be incorporated into the
LBGK dynamics consistently [19,28].

As a special case, if the energy equation is of no interest
and the Mach number is sufficiently small, it is sufficient to
use the following second-order Hermite expansion of Eq.
(12):

T3V = wn L1 +u,+ [y —u'?+ y, (&~ D))2], (17)

where u,=u’'-&,, and y,=0"/m,—1, with u’ given by Egs.
(15) and @' simply set at a constant value. This special case
recovers the multicomponent model in Refs. [6,8,9]. Notic-
ing that the numerical constant d,, in the previous model was
identified with the quantity 1-26 [18], the requirement of
1-d,~ 1/m, to recover the idea-gas EoS in Ref. [9] is sim-
ply 6,~1/m, as required by the equipartition principle. We
also note that essentially the same approach is used in Ref.
[10] as the same-lattice-speed scheme and in Refs.
[12,29,30]. Comparing with the other approach of handling
particles with different molecular weights by using different
lattices [10,11], the model of adjusting the temperature in
equilibrium distribution [9] is not only simpler, more versa-
tile, and computationally efficient in handling large number
of components, but more importantly also consistent with the
continuum kinetic theory and reflects the essence of the un-
derlying physics.

We now proceed to the calculation of mass transport co-
efficients. We first note that the discussion of energy equipar-
tition so far is within the limit of ideal gases since, despite
many attempts, all existing non-ideal-gas LB models do not
have exact microscopic energy conservation. Whether or not
a Hamiltonian with potential contribution can be written
down is at this time still unknown. However, the transport
coefficients in a fluid with nonlocal interaction can be readily
calculated. In Ref. [6], the non-ideal-gas effect can be mod-
eled by an interaction force between particles on neighboring

sites. The force of such a nature on the ath component at x is
s d

Fo==,(0)2 G2 dhlx +e e, (18)

s=1 a=1
where ,=1,(n,) are the component-specific pseudopoten-
tials, G, is a Green’s function which regulates the differ-
ences among interactions between different pairs of compo-
nents, and e, are the vectors pointing from a lattice site to the
interacting neighbors. With the interaction, the EoS of the

mixture becomes
s S

U3 S G i), (19)
2 o=1 s=1

where the second term is the potential contribution. Using
the multiple-component Chapman-Enskog calculation [8],
we obtain the mass flux of the oth component as

j(r = p(r(u(r_ u) = T(,GU— (7'0—— 1/2)1_[0

S
—XUE {(Tg+%>Gg— Tgl_lg}, (20)
s=1

p=né+
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where x,=p,/p is the mass fraction, G,=F ,+p g, is the
total force, and

S
Hg=xg(—Vp+2Gg) +V(n,0). (21)

s=1

First, by letting Vp=Vn, =G ,=0 in Eq. (20), we have

s
1
Jo=-—n (Tg—5>ca—x02 Ty | 'V 6, (22)
s=1

where ¢,=n,/n is the mole fraction of the oth component.
When the relaxations are not all the same, a mass flux will be
induced by a temperature gradient.

We now show that the Maxwell-Stefan law is satisfied in
an ideal-gas mixture. With body force, pressure, and tem-
perature gradients all vanishing, Eq. (20) reduces to

| s
pou,—u)=- (T(,.— E)BV ng+x,0>, 7.V, (23)

s=1

Dividing both sides by p,, and taking the difference between
components « and B, after defining ¢,=(7,—1/2)/m,,

ua—ulB: 0[¢anﬁ/nﬁ—¢avna/na] (24)

Noticing that E%=1VCB=0, and the constraint of homoge-
neous pressure and temperature implies Vn=0 for ideal-gas
mixtures, on multiplying both sides by c,cg/ ¢ and sum-
ming over S, the equation above reduces exactly to the
Maxwell-Stefan equation,

ES: cacplt,—up) v

Cos (25)
gt Dap
where the mutual diffusivity D,z is given by
s
CU'
Dop= Obopp>, —*. (26)

o=1 Yo
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Finally, since the publications of Refs. [6,8,9] a number of
concerns have arisen [23,24] over (i) the validity of model-
ing multicomponent collision process using a single collision
term, which results in coupled transport coefficients; (ii) the
dependency of u’ on the relaxation times; (iii) variations of
transport coefficients modeled via nonlocal interaction; and
(iv) the inability for each component to have its own viscos-
ity if u’=u is required. To address these concerns we give
the following remarks. As shown earlier, the macroscopic
variables u' and @’ only represent an intermediate target of
the relaxation process. As the system approaches the final
equilibrium, they approach the barycentric velocity and tem-
perature. There is a little justification to ensure u'=u and
0’ = 0 during the whole relaxation process. Without the con-
straint of u’=u, each component can have its own relaxation
time and transport coefficients while the conservation laws
are satisfied. For the same reason, it is neither necessary for
u' and 6’ to be solely determined by macroscopic param-
eters. Instead, as intermediate quantities, it is not surprising
that they depend on the relaxation times. Of course, the de-
tailed forms of the transport coefficients, particularly the ra-
tios among them, can deviate from the corresponding predic-
tions of the full Boltzmann equation. Nevertheless, the top
priority here is to construct a model that recovers the correct
macroscopic behaviors, i.e., the principles of indifferentiabil-
ity and energy equipartition and the correct hydrodynamic
equations. In addition, it is well known that for a low-density
ideal gas the transport coefficients are coupled together and
the Prandtl and Schmidt numbers vary only in a narrow
range. The wide variations and complicated dependencies on
other macroscopic parameters of the transport coefficients
observed in liquids and other complex fluids are essentially
due to the effects of long-range interactions and finite exclu-
sion volumes. The most natural way to model such com-
plexities is perhaps via the modeling of the same micro-
scopic physics, and such a capability is highly desirable.
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